Skip to main content
Log in

Electrolyzed-reduced water protects against oxidative damage to DNA, RNA, and protein

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The generation of reactive oxygen species is thought to cause extensive oxidative damage to various biomolecules such as DNA, RNA, and protein. In this study, the preventive, suppressive, and protective effects of in vitro supplementation with electrolyzed-reduced water on H2O2-induced DNA damage in human lymphocytes were examined using a comet assay. Pretreatment, cotreatment, and posttreatment with electrolyzed-reduced water enhanced human lymphocyte resistance to the DNA strand breaks induced by H2O2 in vitro. Moreover, electrolyzed-reduced water was much more effective than diethylpyrocarbonate-treated water in preventing total RNA degradation at 4 and 25°C. In addition, electrolyzed-reduced water completely prevented the oxidative cleavage of horseradish peroxidase, as determined using sodium dodecyl sulfate-polyacrylamide gels. Enhancement of the antioxidant activity of ascorbic acid dissolved in electrolyzed-reduced water was about threefold that of ascorbic acid dissolved in nonelectrolyzed deionized water, as measured by a xanthine-xanthine oxidase superoxide scavenging assay system, suggesting an inhibitory effect of electrolyzed-reduced water on the oxidation of ascorbic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ryoo, K. K., Kang, B. D., and Sumita, O. (2002), J. Mater. Res. 17, 1298–1304.

    Article  CAS  Google Scholar 

  2. Park, C. M., Hung, Y. C., Lin, C. S., and Brackett, R. E. (2005), J. Food Prot. 68, 986–990

    Article  Google Scholar 

  3. Bialka, K. L., Demirci, A., Knabel, S. J., Patterson, P. H., and Puri, V. M. (2004), Poult. Sci. 83, 2071–2078.

    Article  CAS  Google Scholar 

  4. Koseki, S., Isobe, S., and Itoh, K. (2004), J. Food Prot. 67, 2544–2549.

    Article  Google Scholar 

  5. Ichihara, T., Fujii, G., Eda, T., Sasaki, M., and Ueda, Y. (2004), Kyobu Geka 57, 1110–1112.

    Google Scholar 

  6. Koseki, S., Yoshida, K., Isobe, S., and Itoh, K. (2004), J. Food Prot. 67, 1247–1251.

    Article  CAS  Google Scholar 

  7. Koseki, S., Yoshida, K., Kamitani, Y., and Itoh, K. (2003), J. Food Prot. 66, 2010–2016.

    Article  Google Scholar 

  8. Fabrizio, K. A., Sharma, R. R., Demirci, A., and Cutter, C. N. (2002), Poult. Sci. 81, 1598–1605.

    Article  CAS  Google Scholar 

  9. Park, H., Hung, Y. C., and Brackett, R. E. (2002), Int. J. Food Microbiol. 30, 77–83.

    Article  Google Scholar 

  10. Lee, J. H., Rhee, P. L., Kim, J. H., et al. (2004), J. Gastroenterol. Hepatol. 19, 897–903.

    Article  CAS  Google Scholar 

  11. Kohno, S., Kawata, T., Kaku, M., et al. (2004), Jpn. J. Infect. Dis. 57, 52–54.

    Google Scholar 

  12. Mori, Y., Komatsu, S., and Hata, Y. (1997), Odontology 84, 619–626.

    CAS  Google Scholar 

  13. Shirahata, S., Kabayama, S., Nakano, M., et al. (1997), Biochem. Biophys. Res. Commun. 234, 269–274.

    Article  CAS  Google Scholar 

  14. Nishimura, L. Y., Teruya, T., Maki, K., et al. (2002), Cytotechnology 40, 139–149.

    Article  Google Scholar 

  15. Ryoo, K. K., Lee, Y. B., Lee, J. K., and Lee, M. Y. (2005), J. Korean Acad. Ind. Soc. 6, 87–93.

    Google Scholar 

  16. Park, E. J., Ryoo, K. K., Lee, Y. B., Lee, J. K., and Lee, M. Y. (2005), J Korean Soc. Appl. Biol. Chem. 48, 155–160.

    CAS  Google Scholar 

  17. Singh, P. N., McCoy, M. T., Tice, R. R., and Schneider, E. L. (1988), Exp. Cell Res. 175, 184–191.

    Article  CAS  Google Scholar 

  18. Laemmli, U. K. (1970), Nature 227, 680–685.

    Article  CAS  Google Scholar 

  19. Nishikimi, M., Appaji, N., and Yagi, K. (1972), Biochem. Biophys. Res. Commun. 46, 849–854.

    Article  CAS  Google Scholar 

  20. Horváthová, E., Slamenová, D., Hlincíková, L., Mandal, T. K., Gábelová, A., and Collins, A. R. (1998), Mutat. Res. 409, 163–171.

    Article  Google Scholar 

  21. Cotelle, S. and Férard, J. F. (1999), Environ. Mol. Mutagen. 34, 246–255.

    Article  CAS  Google Scholar 

  22. Wu, L. T., Chu, C. C., Chung, J. G., et al. (2004), Mutat. Res. 556, 75–82.

    Article  CAS  Google Scholar 

  23. Machado, M. P., Filho, E. R., Terezan, A. P., Ribeiro, L. R., and Mantovani, M. S., (2005), Toxicol. In Vitro 19, 533–539.

    Article  CAS  Google Scholar 

  24. Azqueta, A., Pachón, G., Cascante, M., Creppy, E., and López de Cerain, A. (2005), Mutagenesis 20, 165–171.

    Article  CAS  Google Scholar 

  25. Park, Y. K., Park, E. J., Kim, J. S., and Kang, M. H. (2003), Mutat. Res. 529, 77–86.

    Article  CAS  Google Scholar 

  26. Yen, G. C., Hung, Y. L., and Hsieh, C. L. (2000), Food Chem. Toxicol. 38, 747–754.

    Article  CAS  Google Scholar 

  27. Chakraborty, S., Roy, M., and Bhattacharya, R. K. (2004), J. Environ. Pathol. Toxicol. Oncol. 23, 215–226.

    Article  CAS  Google Scholar 

  28. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989), Molecular Cloning, pp. 7.3–7.5. (Ford, N., Nolan, C., and Ferguson, M., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  29. Kim, K., Rhee, S. G., and Stadtman, E. R. (1985), J. Biol. Chem. 260, 15,394–15,397.

    CAS  Google Scholar 

  30. Lee, M. Y. and Kim, S. S. (1998), Phytochemistry 49, 23–27.

    Article  Google Scholar 

  31. Podmore, I. D., Griffiths, H. R., Herbert, K. E., Mistry, N., Mistry, P., and Lunec, J. (1998), Nature 392, 559.

    Article  CAS  Google Scholar 

  32. Lee, S. H., Oe, T., and Blair, I. A. (2001), Science 1292, 2083–2086.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Young Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.Y., Kim, Y.K., Ryoo, K.K. et al. Electrolyzed-reduced water protects against oxidative damage to DNA, RNA, and protein. Appl Biochem Biotechnol 135, 133–144 (2006). https://doi.org/10.1385/ABAB:135:2:133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:135:2:133

Index Entries

Navigation